ZAGROŻENIE ZDROWIA PROMIENIOWANIEM JONIZUJĄCYM

Ludzie odpowiedzialni za śmiertelne skutki rozpadu nadzoru sanitarnego
 m. in.  nad źródłami promieniowania jonizującego w polskich szpitalach
i w takich nośnikach radionuklidów, jak woda z kranu
oraz winni narażania Polaków na oddziaływanie zubożonego uranu,
zabierają się do realizacji projektu z zakresu nielegalnego lobbingu
pod nazwą
ATOMEM W POLSKĘ BOGATĄ WE WŁASNE ŹRÓDŁA ENERGII

Dopisek z dnia  26. kwietnia 2011r. :
Zapowiedziany przez rząd Tuska 
poziom manipulacji
informacjami dotyczącymi katastrofy w Czarnobylu
w wykonaniu autorów programów telewizji zwanej publiczną
oraz ich konkurentów z niektórych telewizji prywatnych
daleko wykracza ponad przeciętny poziom 
szerzenia nieprawdy przez
środki masowego rażenia w Polsce


Felieton 12. lutego 2010

Światowy Dzień Chorego 2010 poprzedziło ujawnienie kolejnego raportu Najwyższej Izby Kontroli w sprawie zagrożeń zdrowia i życia pacjentów oraz pracowników polskich szpitali. „Informacja o wynikach kontroli wykorzystania specjalistycznej aparatury medycznej w procesie realizacji usług medycznych, finansowanych ze środków publicznych w latach 2006-2008 (I półrocze), to jeden z najważniejszych dokumentów dokonań III RP, który Prezes Najwyższej Izby Kontroli, pan Jacek Jezierski 7. stycznia 2010r. zatwierdził , a 10. lutego 2010r. ujawnił opinii publicznej.
NIK tak dokumentuje zapewnienie warunków bezpiecznego stosowania promieniowania jonizującego w badaniach rentgenodiagnostycznych:
„Aż 88,7% zakładów realizujących świadczenia rentgenodiagnostyczne nie gwarantowało warunków bezpiecznego stosowania tych urządzeń oraz ochrony pracowników i pacjentów przed zagrożeniami wynikającymi ze stosowania promieniowania jonizującego.
Prawie dwie trzecie (61,5%) jednostek  nie przestrzegało ustawowego obowiązku wykonywania badań wyłącznie sprzętem sprawdzonym pod kątem spełniania wymogów bezpiecznego użytkowania.
Stwierdzono nawet przypadki użytkowania urządzeń, o których było wiadomo, że nie spełniają norm radiologicznych i narażają pacjentów i obsługę na nadmierną dawkę promieniowania rentgenowskiego.
Jedna trzecia (34%) jednostek nie opracowała programu bezpieczeństwa jądrowego i ochrony radiologicznej, który winien zawierać co najmniej opis urządzeń i procedur mających na celu ochronę pracownika i pacjenta przed zagrożeniem.
W 9,4% zakładów nie powołano, lub powołano ze znacznym opóźnieniem, inspektora ochrony radiologicznej, sprawującego nadzór nad przestrzeganiem  wymagań bezpieczeństwa jądrowego i ochrony.
W 7,5% jednostek  pracownie, w których stosowano aparaty rentgenowskie, nie miały zezwolenia na ich uruchomienie lub zgody na udzielanie świadczeń zdrowotnych z zakresu m.in. badań rentgenodiagnostycznych i badań diagnostycznych.
W niemal jednej piątej (18,9%) zakładów stwierdzono przypadki stosowania aparatów rentgenowskich bez wymaganego zezwolenia na ich uruchomienie i stosowanie.
W prawie co czwartym (22,6%) zakładzie badania rentgenodiagnostyczne wykonywał personel, w tym lekarze, nieposiadający wymaganych specjalizacji z radiologii i diagnostyki obrazowej lub certyfikatu ukończenia szkolenia w dziedzinie ochrony radiologicznej pacjenta.
W co szóstym (17%) zakładzie nie przestrzegano warunków bezpiecznej pracy z urządzeniami radiologicznymi.
W 9,4% jednostek  nie wszyscy pracownicy zatrudnieni w warunkach narażenia na promieniowanie jonizujące posiadali orzeczenie lekarskie (wydane przez uprawnionego lekarza) o braku przeciwwskazań do takiego zatrudnienia.
W 7,5% zakładów  nie przeprowadzano regularnych kontrolnych pomiarów dawek indywidualnych lub pomiarów dozymetrycznych dla oceny narażenia pracowników.
W niemal połowie (45,3%) zakładów pracownie rentgenowskie nie miały pełnej dokumentacji, w tym m.in.: zezwoleń na uruchomienie i stosowanie aparatów rentgenowskich i uruchomienie pracowni, protokołów pomiarów dozymetrycznych, dawek otrzymanych przez pracowników, dokumentów programu bezpieczeństwa jądrowego i ochrony radiologicznej.
Stwierdzono przypadki użytkowania urządzeń pomimo posiadania wiedzy o narażaniu pacjentów i personelu medycznego na nadmiar pochłanianej dawki promieniowania rentgenowskiego, z powodu niespełniania przez te urządzenia norm radiologicznych.
Szpital Uniwersytecki w Bydgoszczy niedopełnił obowiązku corocznego wykonania testów specjalistycznych m.in. 11-letniego mammografu i trzech 21-letnich aparatów rtg. Wykonując badania diagnostyczne przy użyciu tych urządzeń Szpital posiadał wiedzę o narażaniu pacjentów i obsługi na nadmiar pochłanianej dawki promieniowania X. Użytkowanie tych aparatów, także ze względu na stare konstrukcje, zagrażało bezpieczeństwu.
Użytkowany w ZOZ Poznań-Jeżyce aparat rentgenowski z 1993 r. nie spełniał od stycznia 2005 r. obowiązujących wymogów technicznych, nie miał atestu pracy, nie był obejmowany konserwacjami i przeglądami technicznymi. Z przeprowadzonego w lutym 2008 r. testu specjalistycznego wynikało, że nie był on bezpieczny dla pacjentów i personelu medycznego, co oznaczało, że nie powinien być wykorzystywany do diagnostyki. Według wyjaśnień dyrektora Zakładu, aparat ten wykorzystywany był do usług medycznych w sytuacjach awaryjnych.
Szpital Praski w Warszawie użytkował aparat rtg przez 10 m-cy po stwierdzonej (podczas testu specjalistycznego) niezgodności badanych parametrów z wymaganymi.
Szpital Powiatowy w Chrzanowie nie podjął stosownych działań w 53,8% przypadków pomiarów jakościowych wykonanych przez PWIS, który nie akceptował od 4,5 do 25% wyników parametrów badań wykonanych na 4 aparatach rtg i na 1 mammografie.
Mimo upływu ponad roku od otrzymania negatywnego wyniku kontroli parametrów fizycznych aparatu rentgenowskiego zębowego Optident, ZOZ w Węgrowie nie podjął działań mających na celu usunięcie stwierdzonych nieprawidłowości. W odpowiedzi na wnioski pokontrolne, kierownik jednostki poinformował NIK o podjętej decyzji kasacji aparatu ze względu na jego wiek i zużycie techniczne.”
W podsumowaniu powyższego materiału dowodowego w sprawach karnych i cywilnych
do kamer telewizji publicznej w dniu 10. lutego 2010r. wypowiedzieli się m. in.
•    prezes NIK, pan Jacek Jezierski:  „Naraża to pacjentów na niebezpieczeństwo, a ponadto nie gwarantuje jakości badań”
•    kierownik I Zakładu Radiologii Klinicznej Warszawskiego Uniwersytetu Medycznego mieszczącego się w Centralnym Szpitalu  Klinicznym przy ul. Banacha w Warszawie,  Konsultant Krajowy w Dziedzinie Radiologii i Diagnostyki Obrazowej, prof. dr hab. n. med. Olgierd Rowiński: „To oczywiście może również prowadzić do wygenerowania - przy dużych dawkach promieniowania – choroby nowotworowej”
•    doradca Ministra Zdrowia, pełniący funkcję rzecznika prasowego Ministra Zdrowia, pan Piotr Olechno: „Jeżeli takie są jednostki, czy placówki, gdzie faktycznie to życie pacjenta może być zagrożone to powinny być albo szybko dofinansowane, albo nawet zamknięte.”
•    występujący w imieniu Narodowego Funduszu Zdrowia, choć niewyszukiwalny w Biuletynie Informacji Publicznej tegoż Funduszu (co stanowi kolejne złamanie obowiązującego prawa), pan Andrzej Troszyński: „Środki , jakie ma Narodowy Fundusz Zdrowia na kontrole, nie pozwalają na skontrolowanie wszystkiej aparatury w 800 szpitalach i kilkudziesięciu tysiącach ambulatoriów. To jest po prostu nie możliwe.”
•    p. o. dyrektora Biuro Promocji zdrowia, Urząd Miasta Stołecznego Warszawy, pan Dariusz Hajdukiewicz : „Zostanie przeprowadzona tak rekontrola, już przez nas zorganizowana, sprawdzimy na ile uwagi zawarte w protokole NIKu są na dziś aktualne”.
Ze swoje strony muszę dodać, że ze względu na rozbieżność wyników kontroli NIK i danych zawartych w dokumencie udostępnionym opinii publicznej przez Głównego Inspektora Sanitarnego w dniu 12 stycznia 2010 „Stan Sanitarny Kraju w 2008 roku, dział Higiena radiacyjna”, ten drugi dokument oraz materiały źródłowe do niego powinien być natychmiast objęty dochodzeniem prokuratury.  W przeciwnym razie osoby, u których doszło , czy też dochodzi do wygenerowania choroby nowotworowej w wyniku narażenia ich na niebezpieczeństwo w związku ze stosowaniem promieniowania jonizującego w badaniach rentgenodiagnostycznych, nie znajdą potwierdzenia swoich słusznych roszczeń  o zadośćuczynienie cierpień fizycznych i psychicznych, odszkodowanie lub rentę.


dr Zbigniew Hałat
ZAGROŻENIA ZDROWIA PACJENTÓW




Felieton 1. kwietnia 2011

W dniu 18. września 2010r. dziennik The Japan Times, poinformował, że należący do firmy Tokyo Electric Power Co Reaktor Nr 3 elektrowni Fukushima po ostatecznym usunięciu usterek zagrażających bezpieczeństwu, rozpoczął działanie w oparciu o Mixed OXide fuel (MOX), czyli mieszane paliwo uranowo-plutonowe, dwa miliony razy bardziej zabójcze niż wzbogacony uran.

Tak zakończyły się wieloletnie zabiegi przeciwników energii atomowej w Japonii podejmujących od 2002r. działania administracyjne i prawne w celu powstrzymania właściciela elektrowni Fukushima przed stosowaniem MOX.

Wchodzący w skład mieszanego paliwa uranowo-plutonowego pluton 239 (239Pu) to najbardziej śmiercionośny pierwiastek znany ludzkości. Został stworzony w laboratoriach amerykańskich w 1940r., zastosowany w bombie atomowej, która zniszczyła Nagasaki, a w wyniku zintensyfikowania prób broni nuklearnej podczas zimnej wojny rozproszony po całym świecie szczególnie w latach 60.-tych XX w., przyczyniając się do epidemii raka i wad rozwojowych w każdym zakątku naszej globalnej wioski.

Sowieckim próbom broni atomowej należy przypisać udział w pojawieniu się wysokiej fali epidemicznej wad rozwojowych i nowotworów złośliwych o rozmaitej lokalizacji na obszarze samej Rosji oraz krajów przez nią podbitych i z nią sąsiadujących. Lokalizacja raka w obrębie płuc, wątroby, kości, szpiku kostnego mogłaby wskazywać na wniknięcie promieniotwórczego plutonu do organizmu drogą oddechową. Lokalizacja raka w jelicie grubym to z kolei możliwy efekt radioaktywnego skażenia substancjami promieniotwórczymi wód powierzchniowych - a po przemyciu skażonej gleby – również podziemnych. Skażenie radioaktywne powietrza, wody i gleby kumuluje się w oczywiście w żywności pochodzenia roślinnego i zwierzęcego, a ta wraz z wodą wnosi do organizmu kolejne porcje substancji radioaktywnych. Stąd też tak silne poruszenie opinii publicznej i władz sanitarnych na tyle cywilizowanych, że chcą uchronić swoich obywateli od jakiegokolwiek zagrożenia ze strony skażenia radioaktywnego żywności importowanej, jak obecnie - z Japonii, albo też własnej, jak n. p. w Niemczech. Niemcy, które nieco wcześniej zakazały importu radioaktywnej dziczyzny z okolic Czarnobyla, obecnie same przyznają, że w mięsie z dzików upolowanych na południu kraju można stwierdzić przekroczenie o 30 do 50% dozwolonego poziomu radioaktywności 600 bequereli na kilogram. 17. marca 2011r. przedstawiciel niemieckich myśliwych oświadczył, że żadna sztuka dziczyzny nie trafi do obrotu bez uprzedniego zbadania licznikiem Geigera.

Tak jest u naszych zachodnich sąsiadów. A u nas? Czy po 25 latach od katastrofy w Czarnobylu nasza żywność jest bezpieczna i czy ktoś ją kontroluje? Na stronach dzieła prof. prof. Józefa Lisa i Anny Pasiecznej ATLAS GEOCHEMICZNY POLSKI, wydanego przez Państwowy Instytut Geologiczny w 1995 (Praca wykonana na zamówienie Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa) czytamy, co następuje: “Zmiana warunków meteorologicznych spowodowała zmianę kierunku przesuwania się skażonych mas powietrza na południowo-zachodni. W dniach 30 kwietnia i 1 maja osiągnęła ona południowo-zachodnie obszary Polski, Czech i południowe Niemcy, powodując na całym tym terenie znaczne skażenia cezem. Ich wielkość zależy od lokalnych warunków pogodowych, zwłaszcza opadów. Na Opolszczyźnie wielkość koncentracji cezu osiągnęła 100 kBq/m kw., a w Bawarii 40 kBq/m kw." A więc na Opolszczyźnie koncentracja cezu 137 w glebie, na której rosną grzyby będące źródłem skażenia dzików, była 2,5 raza wyższa niż w Bawarii, gdzie “ żadna sztuka dziczyzny nie trafi do obrotu bez uprzedniego zbadania licznikiem Geigera”. Toteż jakie są wyniki kontroli żywności w Polsce?

Licznik Geigera potrafi wykryć rozpady cezu 137, czy też jodu 131. Ale jest nieprzydatny w wykrywaniu zagrożenia plutonem. Do wykrycia radioktywności plutonu potrzebne są kosztowne wyspecjalizowane liczniki scyntylacyjne, jak n.p. DP2 Elektra. Aby skutecznie wykryć radiację czujnikiem nastawionym tylko na promieniowanie alfa należy spełnić szereg trudnych do zapewnienia warunków eksploatacyjnych. A jednak warto, gdyż półokres rozpadu plutonu 239 to ponad 24 tysiące lat, w odróżnieniu od jodu 131, którego czas połowicznego rozpadu to zaledwie 8 dni, czy cezu 137 – lat 30.

W skali jednostkowej przed radioaktywnym jodem można zabiezpieczyć tarczycę, blokując ją jodkiem potasu zanim dotrą radioaktywne chmury po awarii elektrowni atomowych, na przykład niemieckich, to zamykanych, to otwieranych przez kanclerz Merkel, co świadczy o stanie bezpieczeństwa tych elektrowni, docenionym zresztą 27. marca 2011r. przez wyborców w Badenii-Wirtembergii. 13 spośród 17 niemieckich elektrowni atomowych ma prawo stosować MOX.

W skali krajowej przed radioaktywnym cezem można uchronić się, wybierając do władzy polityków, którzy państwowych stanowisk decydujących o zdrowiu milionów nie obsadzą komikami z kabaretu.

W skali globalnej przed radioaktywnym plutonem można zabezpieczyć się wyłącznie przez zrezygnowanie z jego wszelkich zastosowań, zarówno wojennych, co nie dla wszystkich jest jeszcze oczywiste, jak i pokojowych, w warunkach wysokiego ryzyka zużywających w elektrowniach atomowych materiał nuklearny bomb i głowic, wcześniej niewykorzystany zgodnie z przeznaczeniem. Czyli do sprowadzania na ludzi masowej śmierci w męczarniach, epidemii raka i wad rozwojowych w kolejnych pokoleniach.

dr Zbigniew Hałat

Felieton 25. marca 2011

Energetyka atomowa była i jest podstawą cywilizacyjnego rozwoju ludzkości w tempie wcześniej nie spotykanym. Pokonując bariery energetyczne, nasz gatunek osiągnął niewyobrażalny sukces w kategoriach biologicznych, takich jak bezprecedensowy przyrost populacji, wydłużenie przeciętnej długości życia, masowe upowszechnienie coraz to nowych narzędzi wprowadzających z dnia na dzień rewolucyjne zmiany w każdej sferze życia człowieka i ludzkich społeczności.
Wchodząc w Afryce do tubylczej kurnej chaty ogrzewanej przy okazji przygotowywania posiłków wątłym ciepłem ogniska, w którym spala się chrust przez cały dzień zbierany i wieczorem znoszony do domu przez stare kobiety dosłownie przygięte do ziemi pod jego ciężarem, zdajemy sobie sprawę z tego, czym w życiu człowieka jest dostęp do energii. Ci z wielu Polaków, którzy przeżyli rozmaite kataklizmy, w tym wojenne, powodziowe, czy też związane z długotrwałym wyłączeniem prądu, sami znają degradujące skutki pierwotnego życia bez dostępu do energii. Na drugim biegunie znajdują się narody państw najbardziej cywilizacyjnie zaawansowanych, które swoją przodującą pozycję zawdzięczają nieprzerwanym dostawom i nieograniczonej dostępności taniej energii.
Do państw tych należy Japonia, która w krótkim czasie, po powstaniu z popiołów zawinionych zniszczeń wojennych i pomimo braku własnych zasobów naturalnych mogących zaspokoić potrzeby energetyczne, osiągnęła szczyt rozwoju gatunku Homo sapiens, w kategoriach biologicznych i cywilizacyjnych. Oczywiście nie obyło się bez błędów, o których warto będzie w przyszłości wspomnieć, dla przestrogi.
Swój sukces Japonia w znacznej mierze zawdzięcza energetyce jądrowej. Trudno byłoby sobie wyobrazić równie skuteczne zaspokojenie zapotrzebowania Japonii poprzez spalanie paliw kopalnych, nawet gazu, czy ropy, nie wspominając o węglu, pod każdym względem najbardziej uciążliwym.
A jednak od 9. marca 2011, godz. 2:45:18 UTC czyli czasu uniwersalnego, kiedy to sejsmografy zarejestrowały w pobliżu wschodniego wybrzeża Wyspy Honshu trzęsienie ziemi o sile 7,2 M na głębokości 14 km oraz w odległości 416 km od Tokio, stolicy Japonii i 169 km od miejscowości Fukushima, w której zlokalizowana była elektrownia atomowa, okazało się, że mówiąc z angielska - nie ma darmowych obiadów. Prędzej czy później za wszystko trzeba zapłacić prawdziwą cenę, nawet wtedy, kiedy aktualna cena wydaje się okazyjna, bo nie uwzględnia kosztów ukrytych, zatajonych, albo mało prawdopodobnych, takich, których możliwośc pojawienia się jest znikoma. Tak znikoma. jak możliwość wystąpienia bardzo silnego trzęsienia ziemi w północnej części Rowu Japońskiego, następowej fali tsunami i zrujnowania elektrowni atomowej Fukushima, a zwłaszcza niekontrolowanej emisji plutonu 239 z reaktora nr 3 tejże elektrowni,
O kosztach ukrytych składających się utrzymywanie skladowisk odpadów nuklearnych dowiadujemy się z relacji mediów pokazujących gwałtowne protesty towarzyszące transportom zużytego paliwa, co w żadnym przypadku nie oddaje wagi problemu. Tu światowa opinia publiczna, zwłaszcza w krajach, których rządy miewają dziwne pomysły, powinna być szczególowo poinformowana o świeżo poniesionej spektakularnej klęsce projektu składowiska nuklearnego w Yucca Mountain, w Newadzie, 130 km od Las Vegas. Niemal dziesięć lat po zatwierdzeniu lokalizacji przez Kongres, okazało się, że USA nadal nie mają żadnej alternatywy dla składowania odpadów nuklearnych wokół elektrowni atomowych rozsianych po całym kraju. Chyba, że posuną się do zbrodniczych działań, o które posądzane są inne państwa, niestety, nie bez powodu, a polegających na zrzucaniu odpadów nuklearnych w krajach rządzonych przez zależne od nich szajki chciwe a przekupne, albo tez wprost do oceanu, o czym wspominają somalijscy piraci.
Do kosztów ukrytych, a właściwie ukrywanych, nieraz nie dość skutecznie, należy skażenie radiacyjne środowiska. Eksploatacja każdej elektrowni atomowej to pasmo wycieków, pożarów, awarii, oskarżeń zaniepokojonych obywateli i dementi władz. Wycieki powodujące transgraniczne skażenie radioaktywne doprowadziły do sytuacji, w której Morze Irlandzkie zostało uznane za najbardziej radioaktywne morze świata, a to za sprawą brytyjskiego zakładu przerobu materiałów nuklearnych Sellafield, wcześniej znanego pod nazwą Windscale, w którym od połowy ubiegłego wieku produkowano pluton 239, wchodzący w skład mieszanego paliwa uranowo-plutonowego (Mixed OXide fuel - MOX). Po pożarze w 1957, w którym uległ zniszczeniu rdzeń i doszło do uwolnienia 750 terabekereli materiału radioaktywnego, w tym jodu 131, co spowodowało konieczność zniszczenia mleka z okolicznych hodowli, nazwę Winscale zmieniono na Sellafield. Jakiekolwiek podejrzenie o podobieństwo polskich partii zmieniających nazwę dla zatarcia śladów jest jak najbardziej uzasadnione. Iście głupkowata dyskusja polityków, paradne spory ekspertów kompromitujących naukę i jawny lobbing reżimowych mediów na rzecz energetyki atomowej zmuszają do kontynuowania tej tematyki w kolejnych felietonach.
Tymczasem zachęcam do składania pisemnych zapytań do władz wszystkich szczebli o dostępność energiii geotermalnej w konkretnej lokalizacji, a także... jodku potasu w aptekach. Jodek potasu blokuje wychwyt jodu radioaktywnego przez tarczycę. Tylko przed ekspozycją na jod 131, nie po jej wystąpieniu.

dr Zbigniew Hałat
W dniu 18. września 2010 dziennik The Japan Times, poinformował, że należący do firmy Tokyo Electric Power Co Reaktor Nr 3 elektrowni Fukushima po usunięciu usterek zagrażających bezpieczeństwu,  rozpoczął działanie w oparciu o Mixed OXide fuel (MOX), czyli mieszane paliwo uranowo-plutonowe, dwa miliony razy bardziej zabójcze niż wzbogacony uran.
Tak zakończyły się wieloletnie próby przeciwników energii atomowej w Japonii podejmujących od 2002r. działania administracyjne i prawne w celu powstrzymania właściciela elektrowni  Fukushima przed stosowaniem MOX.
Wchodzący w skład 239Pluton (239Pu) to najbardziej  śmiercionośny pierwiastek znany ludzkości. Został stworzony w laboratoriach amerykańskich w 1940, zastosowany w bombie atomowej, która zniszczyła Nagasaki,, a w wyniku zintensyfikowania prób broni nuklearnej  rozproszony po całym świecie szczególnie w latach 60.-tych XX w., przyczyniając się do epidemii raka i wad rozwojowych w każdym zakątku naszej globalnej wioski.
Możliwe do przewidzenia - a mimo to lekceważone -  skażenie powietrza, wód i gleb, płodów rolnych oraz bezpośrednio ludzi i zwierząt radioaktywnym plutonem sprowadza potencjalny kataklizm w skali globalnej i realne zagrożenie na masową skalę w skali lokalnej.

Japanese High School Students from Fukushima Make a donation to Earthquake in Japan 2011
Japanese High School Students from Fukushima
Make a donation to Earthquake in Japan 2011

     

Kyodo News

Radiation leak feared at nuke plant, people urged to stay indoors

TOKYO, March 15, Kyodo

The crisis at the quake-hit Fukushima No. 1 nuclear plant reached a critical phase Tuesday with radiation feared to have leaked after apparent hydrogen blasts at two more reactors, triggering growing fears of widespread contamination.

Prime Minister Naoto Kan urged people living between 20 and 30 kilometers of the plant to stay indoors, after radiation equivalent to 400 times the level to which people can safely be exposed in one year was detected near the No. 3 reactor in the plant.

Residents within a 20-km radius have already been ordered to vacate the area following Saturday's hydrogen blast at the plant's No. 1 reactor.

''The danger of further radiation leaks (from the plant) is increasing.'' Kan warned the public at a press conference, while asking people to ''act calmly.''

Chief Cabinet Secretary Yukio Edano said the high radiation level detected at 10:22 a.m. after the explosions at the No. 2 and No. 4 reactors ''would certainly have negative effects on the human body.

more

International Atomic Energy Agency
Japan Earthquake Update
 (15 March 2011, 06:15 CET)

Japanese authorities informed the IAEA that there has been an explosion at the Unit 2 reactor at the Fukushima Daiichi plant. The explosion occurred at around 06:20 on 15 March local Japan time.

Japanese authorities also today informed the IAEA at 04:50 CET that the spent fuel storage pond at the Unit 4 reactor of the Fukushima Daiichi nuclear power plant is on fire and radioactivity is being released directly into the atmosphere.

Dose rates of up to 400 millisievert per hour have been reported at the site. The Japanese authorities are saying that there is a possibility that the fire was caused by a hydrogen explosion.

The IAEA is seeking further information on these developments.

The IAEA continues to liaise with the Japanese authorities and is monitoring the situation as it evolves.

more

          
     

 BERLIN, March 12, 2011 (Reuters) - Chancellor Angela Merkel, whose government has extended the lifespan of Germany's nuclear power plants, called senior cabinet ministers to meet her on Saturday in light of fears of a meltdown in Japan, her spokesman said.

The radiation leak from a damaged nuclear reactor north of Tokyo comes at a difficult time for Merkel, whose conservatives face three state elections in March where worries over nuclear safety could rally her opponents.

Earlier the opposition Social Democrats and Greens seized on the accident in Japan, caused by an earthquake on Friday, to call for a change in Germany's nuclear policy.

"(It shows that) we cannot master nature, nature rules us," said Renate Kuenast, the Greens' parliamentary leader.

The opposition says several German nuclear plants could not withstand a direct hit by an aircraft or an earthquake, although Germany is far less prone to quakes than Japan.

The government's decision last year to keep Germany's 17 nuclear plants running for about 12 years beyond their original shutdown date stirred large-scale protests and weighed on the popularity of Merkel's coalition.

Anti-nuclear protesters will also hold a demonstration on Saturday, with tens of thousands planning to form a 45-km (27 mile) human chain from the city of Stuttgart to an older nuclear power plant that will be kept running longer because of the new policy.

The protest, which had been scheduled before the Japanese quake, is in the state of Baden-Wuerttemberg where Merkel's conservatives risk losing power in elections in two weeks, due partly to rising support for the Greens. Nuclear power is broadly unpopular in Germany.



Japan earthquake poses questions about EU nuclear safety
March 14, 2011


EUOBSERVER / BRUSSELS - Nuclear experts from EU member states will gather in Brussels this week to discuss the damage caused to Japan's Fukushima nuclear power plant and the potential ramifications for Europe, after a powerful earthquake ripped though the Asian country on Friday (11 March).

In an early indication of mounting public hostility to nuclear energy as a result of the Japanese catastrophe, 60,000 people took to the streets in Germany on Saturday, with Austria calling for a series of nuclear 'stress tests' to ensure the safety of European plants.

A second explosion rocked the Fukushima plant on Monday at the plant's No. 3 reactor building, sending out an orange fireball, followed by plumes of smoke. Experts said the explosion was due to the build-up of nitrogen gas in the reactor's protective casing, a similar cause to Saturday's initial explosion.

The International Atomic Energy Agency said radiation levels remained "normal" however, but in Europe the political fall-out was quickly felt over the weekend.

EU energy commissioner Gunther Oettinger will meet with national nuclear safety authorities, nuclear power plant vendors and operators early this week: "to jointly assess the consequences of the accident as well as the lessons that can be drawn from the events in Japan."

"If required, pro-active actions will be taken to address to situation in the EU," added the European Commission in a statement.

Mr Oettinger is known to be a supporter of nuclear energy, with his candidacy broadly welcomed in Brussels last year where officials are keen to diversity energy resources away from the bloc's current dependence on Russian gas.

Commission proposals last November said EU member states must bury their radioactive waste deep underground in future, but the measures were attacked by environmental groups who said the plans were a PR exercise to persuade Europeans that nuclear waste can be dealt with.

In Germany, protest organisers said some 60,000 people demonstrated against nuclear power on Saturday in the southern German state of Baden-Wuerttemberg. The state, home to four of Germany's 17 nuclear reactors, is set for regional elections on 27 March.

A loss for Chancellor Angela Merkel's Christian Democratic Union party would further strengthen the opposition's hold of the Bundesrat, Germany's upper chamber.

"No reactor in the world is prepared for the case of a meltdown," Green Party MP Juergen Trittin said on live television. The former environment minister was involved in negotiations with energy utilities during the last decade on a phasing out of nuclear power, but the plans were later watered down by Merkel's government.

On Sunday the Austrian government said it was in favour of carrying out 'stress tests' on Europe's nuclear power plants, similar to the examinations being carried out on the region's banks after the financial crisis.

Austrian environment minister Nikolaus Berlakovich said he would raise the subject at a meeting of EU environment ministers in Brussels on Monday. We need to check "the safety of nuclear plants in the event of an earthquake and the state of their cooling systems and reactor confinement," he said.

In Finland, finance minister Jyrki Katainen Sunday said he hoped events in Japan would not trigger hasty reactions in the Nordic country. "It is too early to draw any conclusions," said the leader of the conservative National Coalition Party.

A day earlier however, Paavo Arhinmaki, leader of the opposition Left Alliance, told a party conference that no further nuclear reactors should be built in Finland, citing events in Japan where a massive clean-up operation is currently underway.

The official death-toll after Friday's 8.9 magnitude earthquake is around 1,500 people, but the figure is expected to rise much higher. Police in the north-eastern Miyagi prefecture, one of the worst hit areas, estimated on Sunday that at least 10,000 people had been killed in their district alone, mostly by drowning.

EU leaders on Friday asked high representative Catherine Ashton to "mobilise all appropriate assistance" for Japan, whose prime minister, Naoto Kan, has said his country is facing "the most severe crisis since World War II".

ANDREW WILLIS


        
   
Poniższą informację przekazano dziennikarzom 
biorącym udział w konferencji prasowej w dniu 26. 02. 2002r.
poświęconej inauguracji programu ruchu ochrony zdrowia
ZDROWY POLAK 

W wyniku błędu obsługi, awarii przestarzałych urządzeń 
lub w następstwie ataku terrorystycznego 
nad Polskę mogą ponownie napłynąć masy radioaktywnego jodu. 
W takiej sytuacji należy natychmiast zablokować tarczycę preparatem jodu. 
Dawka jodku potasu powinna być zgodna z poniższą tabelą 
i wynikać z wiarygodnej informacji władz sanitarnych 
co do wielkość przewidywanej ekspozycji tarczycy na jod radioaktywny.


Progowe wartości ekspozycji tarczycy na jod radioaktywny
i dawki jodku potasu zalecane dla rozmaitych grup ludności
 
Przewidywana
ekspozycja tarczycy
w remach
Dawka 
jodku potasu
w miligramach
Liczba tabletek po 130 mg
Liczba tabletek po 65 mg
Dorośli  pow. 40 lat
>500
130
1
2
Dorośli 18 - 40 lat
>10
Kobiety w ciąży
i karmiące
> 5
Młodzież 12 - 18 lat
65
1/2
1
Dzieci 3 - 12 lat
Dzieci od 2 miesiąca
- 3 roku życia
32
1/4
1/2
Noworodki w 
1 miesiącu życia
16
1/8
1/4

*Młodzież o ciężarze ciała zbliżonym do wagi dorosłych (> 70 kg)
powinna otrzymać pełną dawkę przewidzianą dla dorosłych (130 mg).


Źródło: Guidance: Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), November 2001. Uwaga: w USA trwają intensywne prace nad zabezpieczeniem elektrowni jądrowych przed atakiem terrorystycznym. 

 

Guidance
Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
November 2001
Procedural

Additional copies are available from:

Office of Training and Communications
Division of Communications Management
Drug Information Branch, HFD-210
5600 Fishers Lane
Rockville, MD 20857
(Tel) 301-827-4573

(Internet) http://www.fda.gov/cder/guidance/index.htm

TABLE OF CONTENTS

I. INTRODUCTION

II. BACKGROUND

III. DATA SOURCES

IV. CONCLUSIONS AND RECOMMENDATIONS V. ADDITIONAL CONSIDERATIONS IN PROPHYLAXIS AGAINST THYROID RADIOIODINE EXPOSURE

VI. SUMMARY

ACKNOWLEDGEMENTS

BIBLIOGRAPHY

Guidance

Potassium Iodide as a Thyroid Blocking

Agent in Radiation Emergencies

This guidance represents the Food and Drug Administration's (FDA's) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. An alternative approach may be used if such approach satisfies the requirements of the applicable statutes and regulations.

I. INTRODUCTION

The objective of this document is to provide guidance to other Federal agencies, including the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), and to state and local governments regarding the safe and effective use of potassium iodide (KI) as an adjunct to other public health protective measures in the event that radioactive iodine is released into the environment. The adoption and implementation of these recommendations are at the discretion of the state and local governments responsible for developing regional emergency-response plans related to radiation emergencies. 

This guidance updates the Food and Drug Administration (FDA) 1982 recommendations for the use of KI to reduce the risk of thyroid cancer in radiation emergencies involving the release of radioactive iodine. The recommendations in this guidance address KI dosage and the projected radiation exposure at which the drug should be used. 

These recommendations were prepared by the Potassium Iodide Working Group, comprising scientists from the FDA's Center for Drug Evaluation and Research (CDER) and Center for Devices and Radiological Health (CDRH) in collaboration with experts in the field from the National Institutes of Health (NIH). Although they differ in two respects (as discussed in Section IV.B), these revised recommendations are in general accordance with those of the World Health Organization (WHO), as expressed in its Guidelines for Iodine Prophylaxis Following Nuclear Accidents: Update 1999 (WHO 1999).

II.BACKGROUND

Under 44 CFR 351, the Federal Emergency Management Agency (FEMA) has established roles and responsibilities for Federal agencies in assisting state and local governments in their radiological emergency planning and preparedness activities. The Federal agencies, including the Department of Health and Human Services (HHS), are to carry out these roles and responsibilities as members of the Federal Radiological Preparedness Coordinating Committee (FRPCC). Under 44 CFR 351.23(f), HHS is directed to provide guidance to state and local governments on the use of radioprotective substances and the prophylactic use of drugs (e.g., KI) to reduce the radiation dose to specific organs. This guidance includes information about dosage and projected radiation exposures at which such drugs should be used.

The FDA has provided guidance previously on the use of KI as a thyroid blocking agent. In the Federal Register of December 15, 1978, FDA announced its conclusion that KI is a safe and effective means by which to block uptake of radioiodines by the thyroid gland in a radiation emergency under certain specified conditions of use. In the Federal Register of June 29, 1982, FDA announced final recommendations on the administration of KI to the general public in a radiation emergency. Those recommendations were formulated after reviewing studies relating radiation dose to thyroid disease risk that relied on estimates of external thyroid irradiation after the nuclear detonations at Hiroshima and Nagasaki and analogous studies among children who received therapeutic radiation to the head and neck. Those recommendations concluded that at a projected dose to the thyroid gland of 25 cGy or greater from ingested or inhaled radioiodines, the risks of short-term use of small quantities of KI were outweighed by the benefits of suppressing radioiodine-induced thyroid cancer.1 The amount of KI recommended at that time was 130 mg per day for adults and children above 1 year of age and 65 mg per day for children below 1 year of age. The guidance that follows revises our 1982 recommendations on the use of KI for thyroid cancer prophylaxis based on a comprehensive review of the data relating radioioidine exposure to thyroid cancer risk accumulated in the aftermath of the 1986 Chernobyl reactor accident.

III. DATA SOURCES

A. Reliance on Data from Chernobyl

In epidemiological studies investigating the relationship between thyroidal radioiodine exposure and risk of thyroid cancer, the estimation of thyroid radiation doses is a critical and complex aspect of the analyses. Estimates of exposure, both for individuals and across populations, have been reached in different studies by the variable combination of (1) direct thyroid measurements in a segment of the exposed population; (2) measurements of 131I (iodine isotope) concentrations in the milk consumed by different groups (e.g., communities) and of the quantity of milk consumed; (3) inference from ground deposition of long-lived radioisotopes released coincidentally and presumably in fixed ratios with radioiodines; and (4) reconstruction of the nature and extent of the actual radiation release.

All estimates of individual and population exposure contain some degree of uncertainty. The uncertainty is least for estimates of individual exposure based on direct thyroid measurements. Uncertainty increases with reliance on milk consumption estimates; is still greater with estimates derived from ground deposition of long-lived radioisotopes, and is highest for estimates that rely heavily on release reconstruction.

Direct measurements of thyroid radioactivity are unavailable from the Hanford, Nevada Test Site, and Marshall Islands exposures. Indeed, the estimates of thyroid radiation doses related to these releases rely heavily on release reconstructions and, in the former two cases, on recall of the extent of milk consumption 40 to 50 years after the fact. In the Marshall Islands cohort, urinary radioiodine excretion data were obtained and used in calculating exposure estimates. 

Because of the great uncertainty in the dose estimates from the Hanford and Nevada Test Site exposures and due to the small numbers of thyroid cancers occurring in the populations potentially exposed, the epidemiological studies of the excess thyroid cancer risk related to these radioiodine releases are, at best, inconclusive. As explained below, the dosimetric data derived in the studies of individual and population exposures following the Chernobyl accident, although not perfect, are unquestionably superior to data from previous releases. In addition, the results of the earlier studies are inadequate to refute cogent case control study evidence from Chernobyl of a cause-effect relationship between thyroid radioiodine deposition and thyroid cancer risk.2

The Chernobyl reactor accident of April 1986 provides the best-documented example of a massive radionuclide release in which large numbers of people across a broad geographical area were exposed acutely to radioiodines released into the atmosphere. Therefore, the recommendations contained in this guidance are derived from our review of the Chernobyl data as they pertain to the large number of thyroid cancers that occurred. These are the most comprehensive and reliable data available describing the relationship between thyroid radiation dose and risk for thyroid cancer following an environmental release of 131I. In contrast, the exposures resulting from radiation releases at the Hanford Site in Washington State in the mid-1940s and in association with the nuclear detonations at the Nevada Test Site in the 1950s were extended over years, rather than days to weeks, contributing to the difficulty in estimating radioactive dose in those potentially exposed (Davis et al., 1999; Gilbert et al., 1998). The exposure of Marshall Islanders to fallout from the nuclear detonation on Bikini in 1954 involved relatively few people, and although the high rate of subsequent thyroid nodules and cancers in the exposed population was likely caused in large part by radioiodines, the Marshall Islands data provide little insight into the dose-response relationship between radioactive iodine exposure and thyroid cancer risk (Robbins and Adams 1989).

Beginning within a week after the Chernobyl accident, direct measurements of thyroid exposure were made in hundreds of thousands of individuals, across three republics of the former Soviet Union (Robbins and Schneider 2000, Gavrilin et al., 1999, Likhtarev et al., 1993, Zvonova and Balonov 1993). These thyroid measurements were used to derive, in a direct manner, the thyroid doses received by the individuals from whom the measurements were taken. The thyroid measurements were also used as a guide to estimate the thyroid doses received by other people, taking into account differences in age, milk consumption rates, and ground deposition densities, among other things. The thyroid doses derived from thyroid measurements have a large degree of uncertainty, especially in Belarus, where most of the measurements were made by inexperienced people with detectors that were not ideally suited to the task at hand (Gavrilin et al., 1999 and UNSCEAR 2000). However, as indicated above, the uncertainties attached to thyroid dose estimates derived from thyroid measurements are, as a rule, lower than those obtained without recourse to those measurements.

It is also notable that the thyroid radiation exposures after Chernobyl were virtually all internal, from radioiodines. Despite some degree of uncertainty in the doses received, it is reasonable to conclude that the contribution of external radiation was negligible for most individuals. This distinguishes the Chernobyl exposures from those of the Marshall Islanders. Thus, the increase in thyroid cancer seen after Chernobyl is attributable to ingested or inhaled radioiodines. A comparable burden of excess thyroid cancers could conceivably accrue should U.S. populations be similarly exposed in the event of a nuclear accident. This potential hazard highlights the value of averting such risk by using KI as an adjunct to evacuation, sheltering, and control of contaminated foodstuffs.

    B. Thyroid Cancers in the Aftermath of Chernobyl
The Chernobyl reactor accident resulted in massive releases of 131I and other radioiodines. Beginning approximately 4 years after the accident, a sharp increase in the incidence of thyroid cancer among children and adolescents in Belarus and Ukraine (areas covered by the radioactive plume) was observed. In some regions, for the first 4 years of this striking increase, observed cases of thyroid cancer among children aged 0 through 4 years at the time of the accident exceeded expected number of cases by 30- to 60-fold. During the ensuing years, in the most heavily affected areas, incidence is as much as 100-fold compared to pre-Chernobyl rates (Robbins and Schneider 2000; Gavrilin et al., 1999; Likhtarev et al., 1993; Zvonova and Balonov 1993). The majority of cases occurred in children who apparently received less than 30 cGy to the thyroid (Astakhova et al., 1998). A few cases occurred in children exposed to estimated doses of < 1 cGy; however, the uncertainty of these estimates confounded by medical radiation exposures leaves doubt as to the causal role of these doses of radioiodine (Souchkevitch and Tsyb 1996).

The evidence, though indirect, that the increased incidence of thyroid cancer observed among persons exposed during childhood in the most heavily contaminated regions in Belarus, Ukraine, and the Russian Federation is related to exposure to iodine isotopes is, nevertheless, very strong (IARC 2001). We have concluded that the best dose-response information from Chernobyl shows a marked increase in risk of thyroid cancer in children with exposures of 5 cGy or greater (Astakhova et. al., 1998; Ivanov et al., 1999; Kazakov et al., 1992). Among children born more than nine months after the accident in areas traversed by the radioactive plume, the incidence of thyroid cancer has not exceeded preaccident rates, consistent with the short half-life of 131I.

The use of KI in Poland after the Chernobyl accident provides us with useful information regarding its safety and tolerability in the general population. Approximately 10.5 million children under age 16 and 7 million adults received at least one dose of KI. Of note, among newborns receiving single doses of 15 mg KI, 0.37 percent (12 of 3214) showed transient increases in TSH (thyroid stimulating hormone) and decreases in FT4 (free thyroxine). The side effects among adults and children were generally mild and not clinically significant. Side effects included gastrointestinal distress, which was reported more frequently in children (up to 2 percent, felt to be due to bad taste of SSKI solution) and rash (~1 percent in children and adults). Two allergic reactions were observed in adults with known iodine sensitivity (Nauman and Wolff 1993).

Thus, the studies following the Chernobyl accident support the etiologic role of relatively small doses of radioiodine in the dramatic increase in thyroid cancer among exposed children. Furthermore, it appears that the increased risk occurs with a relatively short latency. Finally, the Polish experience supports the use of KI as a safe and effective means by which to protect against thyroid cancer caused by internal thyroid irradiation from inhalation of contaminated air or ingestion of contaminated food and drink when exposure cannot be prevented by evacuation, sheltering, or food and milk control.

IV. CONCLUSIONS AND RECOMMENDATIONS

A. Use of KI in Radiation Emergencies: Rationale, Effectiveness, Safety

For the reasons discussed above, the Chernobyl data provide the most reliable information available to date on the relationship between internal thyroid radioactive dose and cancer risk. They suggest that the risk of thyroid cancer is inversely related to age, and that, especially in young children, it may accrue at very low levels of radioiodine exposure. We have relied on the Chernobyl data to formulate our specific recommendations below.

The effectiveness of KI as a specific blocker of thyroid radioiodine uptake is well established (Il'in LA, et al., 1972) as are the doses necessary for blocking uptake. As such, it is reasonable to conclude that KI will likewise be effective in reducing the risk of thyroid cancer in individuals or populations at risk for inhalation or ingestion of radioiodines.

Short-term administration of KI at thyroid blocking doses is safe and, in general, more so in children than adults. The risks of stable iodine administration include sialadenitis (an inflammation of the salivary gland, of which no cases were reported in Poland among users after the Chernobyl accident), gastrointestinal disturbances, allergic reactions and minor rashes. In addition, persons with known iodine sensitivity should avoid KI, as should individuals with dermatitis herpetiformis and hypocomplementemic vasculitis, extremely rare conditions associated with an increased risk of iodine hypersensitivity. 

Thyroidal side effects of stable iodine include iodine-induced thyrotoxicosis, which is more common in older people and in iodine deficient areas but usually requires repeated doses of stable iodine. In addition, iodide goiter and hypothyroidism are potential side effects more common in iodine sufficient areas, but they require chronic high doses of stable iodine (Rubery 1990). In light of the preceding, individuals with multinodular goiter, Graves' disease, and autoimmune thyroiditis should be treated with caution, especially if dosing extends beyond a few days. The vast majority of such individuals will be adults.

The transient hypothyroidism observed in 0.37 percent (12 of 3214) of neonates treated with KI in Poland after Chernobyl has been without reported sequelae to date. There is no question that the benefits of KI treatment to reduce the risk of thyroid cancer outweigh the risks of such treatment in neonates. Nevertheless, in light of the potential consequences of even transient hypothyroidism for intellectual development, we recommend that neonates (within the first month of life) treated with KI be monitored for this effect by measurement of TSH (and FT4, if indicated) and that thyroid hormone therapy be instituted in cases in which hypothyroidism develops (Bongers-Schokking 2000; Fisher 2000; Calaciura 1995).

B. KI Use in Radiation Emergencies: Treatment Recommendations

After careful review of the data from Chernobyl relating estimated thyroid radiation dose and cancer risk in exposed children, FDA is revising its recommendation for administration of KI based on age, predicted thyroid exposure, and pregnancy and lactation status (see Table). 
 





Threshold Thyroid Radioactive Exposures and 

Recommended Doses of KI for Different Risk Groups

 
Predicted
Thyroid exposure(cGy)
KI dose (mg)
# of 130 mg tablets
# of 65 
mg tablets
Adults over 40 yrs >500 130 1 2
Adults over 18 through 40 yrs >10
Pregnant or lactating women > 5
Adoles. over 12 through 18 yrs* 65 1/2 1
Children over 3 through 12 yrs
Over 1 month through 3 years 32 1/4 1/2
Birth through 1 month 16 1/8 1/4

*Adolescents approaching adult size (> 70 kg) should receive the full adult dose (130 mg).

The protective effect of KI lasts approximately 24 hours. For optimal prophylaxis, KI should therefore be dosed daily, until a risk of significant exposure to radioiodines by either inhalation or ingestion no longer exists. 

Individuals intolerant of KI at protective doses, and neonates, pregnant and lactating women (in whom repeat administration of KI raises particular safety issues, see below) should be given priority with regard to other protective measures (i.e., sheltering, evacuation, and control of the food supply).

Note that adults over 40 need take KI only in the case of a projected large internal radiation dose to the thyroid (>500 cGy) to prevent hypothyroidism.

These recommendations are meant to provide states and local authorities as well as other agencies with the best current guidance on safe and effective use of KI to reduce thyroidal radioiodine exposure and thus the risk of thyroid cancer. FDA recognizes that, in the event of an emergency, some or all of the specific dosing recommendations may be very difficult to carry out given their complexity and the logistics of implementation of a program of KI distribution. The recommendations should therefore be interpreted with flexibility as necessary to allow optimally effective and safe dosing given the exigencies of any particular emergency situation. In this context, we offer the following critical general guidance: across populations at risk for radioiodine exposure, the overall benefits of KI far exceed the risks of overdosing, especially in children, though we continue to emphasize particular attention to dose in infants.

These FDA recommendations differ from those put forward in the World Health Organization (WHO) 1999 guidelines for iodine prophylaxis in two ways. WHO recommends a 130-mg dose of KI for adults and adolescents (over 12 years). For the sake of logistical simplicity in the dispensing and administration of KI to children, FDA recommends a 65-mg dose as standard for all school-age children while allowing for the adult dose (130 mg, 2 X 65 mg tablets) in adolescents approaching adult size. The other difference lies in the threshold for predicted exposure of those up to 18 years of age and of pregnant or lactating women that should trigger KI prophylaxis. WHO recommends a threshold of 1 cGy for these two groups. As stated earlier, FDA has concluded from the Chernobyl data that the most reliable evidence supports a significant increase in the risk of childhood thyroid cancer at exposures of 5 cGy or greater.

The downward KI dose adjustment by age group, based on body size considerations, adheres to the principle of minimum effective dose. The recommended standard dose of KI for all school-age children is the same (65 mg). However, adolescents approaching adult size (i.e., >70 kg) should receive the full adult dose (130 mg) for maximal block of thyroid radioiodine uptake. Neonates ideally should receive the lowest dose (16 mg) of KI. Repeat dosing of KI should be avoided in the neonate to minimize the risk of hypothyroidism during that critical phase of brain development (Bongers-Schokking 2000; Calaciura et al., 1995). KI from tablets (either whole or fractions) or as fresh saturated KI solution may be diluted in milk, formula, or water and the appropriate volume administered to babies. As stated above, we recommend that neonates (within the first month of life) treated with KI be monitored for the potential development of hypothyroidism by measurement of TSH (and FT4, if indicated) and that thyroid hormone therapy be instituted in cases in which hypothyroidism develops (Bongers-Schokking 2000; Fisher 2000; Calaciura et al., 1995).

Pregnant women should be given KI for their own protection and for that of the fetus, as iodine (whether stable or radioactive) readily crosses the placenta. However, because of the risk of blocking fetal thyroid function with excess stable iodine, repeat dosing with KI of pregnant women should be avoided. Lactating females should be administered KI for their own protection, as for other young adults, and potentially to reduce the radioiodine content of the breast milk, but not as a means to deliver KI to infants, who should get their KI directly. As for direct administration of KI, stable iodine as a component of breast milk may also pose a risk of hypothyroidism in nursing neonates. Therefore, repeat dosing with KI should be avoided in the lactating mother, except during continuing severe contamination. If repeat dosing of the mother is necessary, the nursing neonate should be monitored as recommended above.

V. ADDITIONAL CONSIDERATIONS IN PROPHYLAXIS AGAINST THYROID RADIOIODINE EXPOSURE

Certain principles should guide emergency planning and implementation of KI prophylaxis in the event of a radiation emergency. After the Chernobyl accident, across the affected populations, thyroid radiation exposures occurred largely due to consumption of contaminated fresh cow's milk (this contamination was the result of milk cows grazing on fields affected by radioactive fallout) and to a much lesser extent by consumption of contaminated vegetables. In this or similar accidents, for those residing in the immediate area of the accident or otherwise directly exposed to the radioactive plume, inhalation of radioiodines may be a significant contributor to individual and population exposures. As a practical matter, it may not be possible to assess the risk of thyroid exposure from inhaled radioiodines at the time of the emergency. The risk depends on factors such as the magnitude and rate of the radioiodine release, wind direction and other atmospheric conditions, and thus may affect people both near to and far from the accident site.

For optimal protection against inhaled radioiodines, KI should be administered before or immediately coincident with passage of the radioactive cloud, though KI may still have a
substantial protective effect even if taken 3 or 4 hours after exposure. Furthermore, if the release of radioiodines into the atmosphere is protracted, then, of course, even delayed administration may reap benefits by reducing, if incompletely, the total radiation dose to the thyroid.

Prevention of thyroid uptake of ingested radioiodines, once the plume has passed and radiation protection measures (including KI) are in place, is best accomplished by food control measures and not by repeated administration of KI. Because of radioactive decay, grain products and canned milk or vegetables from sources affected by radioactive fallout, if stored for weeks to months after production, pose no radiation risk. Thus, late KI prophylaxis at the time of consumption is not required.

As time is of the essence in optimal prophylaxis with KI, timely administration to the public is a critical consideration in planning the emergency response to a radiation accident and requires a ready supply of KI. State and local governments choosing to incorporate KI into their emergency response plans may consider the option of predistribution of KI to those individuals who do not have a medical condition precluding its use.

VI. SUMMARY

FDA maintains that KI is a safe and effective means by which to prevent radioiodine uptake by the thyroid gland, under certain specified conditions of use, and thereby obviate the risk of thyroid cancer in the event of a radiation emergency. Based upon review of the literature, we have proposed lower radioactive exposure thresholds for KI prophylaxis as well as lower doses of KI for neonates, infants, and children than we recommended in 1982. As in our 1982 notice in the Federal Register, FDA continues to recommend that radiation emergency response plans include provisions, in the event of a radiation emergency, for informing the public about the magnitude of the radiation hazard, about the manner of use of KI and its potential benefits and risks, and for medical contact, reporting, and assistance systems. FDA also emphasizes that emergency response plans and any systems for ensuring availability of KI to the public should recognize the critical importance of KI administration in advance of exposure to radioiodine. As in the past, FDA continues to work in an ongoing fashion with manufacturers of KI to ensure that high-quality, safe, and effective KI products are available for purchase by consumers as well as by state and local governments wishing to establish stores for emergency distribution.

KI provides protection only for the thyroid from radioiodines. It has no impact on the uptake by the body of other radioactive materials and provides no protection against external irradiation of any kind. FDA emphasizes that the use of KI should be as an adjunct to evacuation (itself not always feasible), sheltering, and control of foodstuffs.

ACKNOWLEDGEMENTS

The KI Taskforce would like to extend special thanks to our members from the NIH: Jacob Robbins, M.D., and Jan Wolff, Ph.D., M.D., of the National Institute of Diabetes, Digestive, and Kidney Diseases and Andre Bouville, Ph.D., of the National Cancer Institute. In addition, we would like to thank Dr. David V. Becker of the Department of Radiology, Weill Medical College (WMC) of Cornell University and The New York Presbyterian Hospital-WMC Cornell Campus, for his valuable comments on the draft

.

BIBLIOGRAPHY

Astakhova LN, Anspaugh LR, Beebe GW, Bouville A, Drozdovitch VV, Garber V, Gavrilin YI, Khrouch VT, Kuvshinnikov AV, Kuzmenkov YN, Minenko VP, Moschik KV, Nalivko AS, Robbins J, Shemiakina EV, Shinkarev S, Tochitskaya VI, Waclawiw MA. "Chernobyl-Related Thyroid Cancer in Children in Belarus: A Case-Control Study." Radiat Res 1998; 150:349-356.

Baverstock K, Egloff B, Pinchera A, Ruchti C, Dillwyn W. "Thyroid Cancer After Chernobyl" (letter to the editor). Nature 1992; 359:21-22.

Becker DV, Robbins J, Beebe GW, Bouville AC, Wachholz BW. "Childhood Thyroid Cancer Following the Chernobyl Accident: A Status Report." Endocrinol Metab Clin North Am 1996; 25(1): 197-211.

Bongers-Schokking JJ, Koot HM, Wiersma D, Verkerk PH, de Muinck Keizer-Schrama SMPF. "Influence of timing and dose of thyroid hormone replacement on development in infants with congenital hypothyroidism." J Pediatrics 2000; 136(3): 292-297.

Calaciura F, Mendoria G, Distefano M, Castorina S, Fazio T, Motta RM, Sava L, Delange F, Vigneri R. "Childhood IQ Measurements in Infants With Transient Congenital Hypothyroidism." Clin Endocrinol 1995;43:473-477.

Davis S, Kopecky KJ, Hamilton T, Amundson B, Myers PA. Summary Final Report of the Hanford Thyroid Disease Study. Seattle: Fred Hutchinson Cancer Research Center,1999.

Fisher DA. "The importance of early management in optimizing IQ in infants with congenital hypothyroidism." J Pediatrics 2000; 136(3): 273-274.

Gavrilin YI, Khrouch VT, Shinkarev SM, Krysenko NA, Skryabin AM, Bouville A, Anspaugh LR. "Chernobyl Accident: Reconstruction of Thyroid Dose for Inhabitants of the Republic of Belarus." Health Phys 1999; 76(2):105-119.

Gilbert ES, Tarone R, Bouville A, Ron E. "Thyroid Cancer Rates and 131I Doses From Nevada Atmospheric Nuclear Bomb Tests." J Natl Cancer Inst 1998; 90(21): 1654-60.

Harrison JR, Paile W, Baverstock K. Public Health Implications of Iodine Prophylaxis in Radiological Emergencies. In: "Thomas G, Karaoglou A, Williams ED.", eds. Radiation and Thyroid Cancer. Singapore: World Scientific, 1999; 455-463.

IARC- International Agency for Research on Cancer. IARC Monographs non the evaluation of carcinogenic risk to humans. Volume 78- Ionizing radiation, Part 2: Some internally deposited radionuclides. IARC Press, Lyon, France; 2001.

Il'in LA, Arkhangel'skaya GV, Konstantinov YO, Likhtarev IA. Radioactive Iodine in the Problem of Radiation Safety. Moscow, Atomizdat 1972; 208-229.

Ivanov VK, Gorski AI, Pitkevitch VA, Tsyb AF, Cardis E, Storm H. "Risk of Radiogenic Thyroid Cancer in Russia Following the Chernobyl Accident." In: Thomas G, Karaoglou A, Williams ED., eds. Radiation and Thyroid Cancer. Singapore: World Scientific, 1999; 89-96.

Jacob P, Goulko G, Heidenreich WF, Likhtarev I, Kairo I, Tronko ND, Bogdanova TI, Kenigsberg J, Buglova E, Drozdovitch V, Goloneva A, Demidchik EP, Balonov M, Zvonova I, Beral V., "Thyroid Cancer Risk to Children Calculated." Nature 1998; 392:31-32.

Kazakov VS, Demidchik EP, Astakhova LN. "Thyroid Cancer After Chernobyl" (letter to the editor). Nature 1992; 359:21.

Likhtarev, IA, Shandala NK, Gulko GM, Kairo IA, Chepurny NI, "Ukranian Thyroid Doses After The Chernobyl Accident." Health Physics 1993; 64(6):594-599.

Likhtarev IA, Sobolev BG, Kairo IA, Tronko ND, Bogdanova TI, Olelnic VA, Epshtein EV, Beral V. "Thyroid Cancer in the Ukraine." Nature 1995; 375:365.

Mettler FH, Becker DV, Walchholz BW, Bouville AC., "Chernobyl: 10 Years Later." J Nucl Med 1996; 37:24N-27N.

Nauman J, Wolff J. " Iodide Prophylaxis in Poland After the Chernobyl Reactor Accident: Benefits and Risks." Am J Med 1993; 94: 524-532.

Robbins J, Adams WH. "Radiation Effects in the Marshall Islands." In: Nagataki S, ed. Radiation and the Thyroid. Proceedings of the 27th Annual Meeting of the Japanese

Nuclear Medicine Society. Amsterdam, Excerpta Medica, 1989; 11-24. 

Robbins J, Schneider AB. "Thyroid Cancer following Exposure to Radioactive Iodine." Reviews in Endocrine and Metabolic Disorders 2000; 1:197-203.

Rubery ED. "Practical Aspects of Prophylactic Stable Iodine Usage." In: Rubery E, Smales E., 416 eds. Iodine Prophylaxis Following Nuclear Accidents: Proceedings of a Joint WHO/CEC Workshop. Oxford, Pergamon Press, 1990; 141-150. 

Souchkevitch GN, Tsyb AI., eds. Health Consequences of the Chernobyl Accident: ScientificReport. World Health Organization, Geneva, 1996; 248-250. 

Stepanenko V, Tsyb A, Skvortsov V, Kondrashov A, ShakhtarinV, Hoshi M, Ohtaki M, Matsuure M, Takada J, Endo S. "New Results of Thyroid Retrospective Dosimetry in Russia Following the Chernobyl Accident." In: Thomas G, Karaoglou A, Williams ED., eds. Radiation and Thyroid Cancer. Singapore: World Scientific, 1999; 333-339.

Stsjazhko VA, Tsyb AF, Tronko ND, Souchkevitch G, Baverstock K. "Childhood Thyroid Cancer Since Accident at Chernobyl." BMJ 1995; 310:801.

UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, effects and risks of ionizing radiation 2000 Report to the General Assembly, with annexes, New York, N.Y., United Nations; 2000.

Williams ED, Becker D, Dimidchik EP, Nagataki S, Pinchera A, Tronko ND. "Effects on the Thyroid in Populations Exposed to Radiation as a Result of the Chernobyl Accident." In: One Decade After Chernobyl: Summing up the Consequence of the Accident. Vienna, International Atomic Energy Agency, 1996; 207-230.

World Health Organization, Geneva, Guidelines for Iodine Prophylaxis following Nuclear Accidents: Update 1999

"Report on the Joint WHO/CEC Workshop on Iodine Prophylaxis following Nuclear Accidents: Rationale for Stable Iodine Prophylaxis." In: Rubery E, Smales E., eds. Iodine Prophylaxis following Nuclear Accidents: Proceedings of a joint WHO/CEC Workshop.

Zvonova IA and Balonov MI. "Radioiodine Dosimetry and Prediction of Consequences of Thyroid Exposure of the Russian Population Following the Chernobyl Accident." Pages 71-125 in : The Chernobyl Papers. Doses to the Soviet Population and Early Health Effects Studies. Volume I (S.E. Mervin and M.I. Balonov, eds.). Research Enterprises Inc., Richland, Washington, 1993.

1 For the radiation emitted by 131 I (electrons and photons), the radiation-weighting factor is equal to one, so that the absorbed dose to the thyroid gland expressed in centigrays (cGy) is numerically equal to the thyroid equivalent dose expressed in rem (1 cGy = 1 rem). 

2 We have included in this guidance an extensive bibliography of the sources used in developing these revised recommendations.
 




POTASSIUM IODINE (KI) TREATMENT FOR ANIMALS FOLLOWING A NUCLEAR DISASTER
FACT SHEET for VETERINARIANS

Mississippi Board of Animal Health
121 North Jefferson St.   Jackson, MS  39201 
  P.O. Box 3889   Jackson, MS 39207
MS Animal Disaster Hotline: 1-888-722-3106

What is the most important thing owners can do to protect their animals in a Nuclear Disaster?

  • Plan ahead. Animal owners should make plans in advance with friends, relatives, or shelters for housing their pets in a disaster. This will be helpful for a nuclear accident or any natural disaster.
  • Animal owners should be encouraged to purchase pet carriers.
  • Owners can use regular veterinary check-ups to practice evacuation plans from their homes.
  • Owners should have copies of their pet’s health records, including rabies vaccination.
  • Owners should have their pets micro-chipped for easy identification in an emergency.

What is KI treatment and what does it do?

  • Potassium iodide (KI) is a salt of iodine. It is one of several ingredients that can be added to tale salt to make it iodized.
  • KI has also been approved by the FDA as a nonprescription drug for use as a “blocking agent” to prevent the human thyroid gland from absorbing radioactive iodine.
  • December 10, 2001 the Food and Drug Administration issued Guidance: Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies for use of KI in humans during a radiological emergency. There is no such national guidance for use of KI in animals available.
  • KI has a wide margin of safety, however like all medications, KI can be toxic if dosed incorrectly. Documented side effects include vomiting, drooling, runny eyes, rash, collapse and death. KI should not be used in animals with a known allergy to iodine. Suggested dose guidelines are listed below.
  • KI is a medication that can be given to humans and animals.
  • KI may not provide people or animals with 100% protection against all radioactive iodine.
  • The effectiveness of KI as a thyroid blocking agent is greatest if administered before the time of exposure to radioactive iodine, but some exposure saving can be obtained by administration shortly after exposure.

Should pets be given KI for radiological emergencies?

There are no guidelines for administration of KI for pets during an emergency. However, your clients may ask you to give KI to their pets if they have received it Potassium Iodide (KI) Treatment forAnimals Following a Nuclear Disaster because of a radiological exposure. Administration of KI should be determined by you with the owner. The following information is provided to assist you with that decision. This information is provided as guidance and recommendations only.

  • KI lessens the damage to the thyroid from radioactive iodine only. KI does not protect against other harmful radioactive rays released during a nuclear disaster.
  • Radiation is most harmful to young, actively growing animals.
  • KI must be given before or within 4 hours of exposure to be effective.
  • KI is an over-the-counter medication and you may want to stock it if there is demand in your area or special order it for the owner.
  • Do not give KI to your pet if it is sensitive to iodine.
  • Consider the age of the animal. Young animals have the highest risk of health problems from radioactive iodine and radioactive iodine causes long-term potential for thyroid cancer. Therefore, if the animal is elderly there is little chance the animal will get thyroid cancer in its lifetime (one estimate for humans was about 4 years) and elderly pets may have more problems with side effects from the KI.

Note: If a pet has been left on the property during an exposure and the owner is unable to retrieve it before 4 hours then KI will not be effective. If the pet is evacuated with the owner prior to exposure to radiation, there is no need for KI. It is our recommendation that KI only be considered for the pet if the owner has received it and the pet is with the owner.

Where can veterinarians find information regarding dosing and efficacy of KI?

Journal articles on the subject include:

  • Use of radioiodine urinalysis for effective thyroid blocking in the first few hours post exposure - Health Phys 1999 Jan;76(1):11-6
  • Potassium iodate and its comparison to potassium iodide as a blocker of 131I uptake by the thyroid in rats - Health Phys 1993 Nov;65(5):545-9
    • Reference the abstracts on page 3 of this document
    • KI comes in 130 mg and 65 mg bottles. Pro-KI™ 65 mg recommends the following dosages for pets (www.aaoobfoods.com/NBC.htm):
      • Large dogs: 1.0-2.0 tablets per day
      • Medium dogs: 0.5-1.0 tablets per day
      • Cats and small dogs: 0.25-0.5 tablet per day

Where can I get further information?

    • Contact your veterinarian with questions relating to KI and your pets.
    • www.nukepills.com has information about KI pills.
    • Mississippi Board of Animal Health (1-888-722-3106; www.mbah.state.ms.us)

REFERENCES ON KI DOSING AND EFFICACY

Health Phys 1999 Jan;76(1):11-6

    Use of radioiodine urinalysis for effective thyroid blocking in the first few hours post exposure, Ribela MT, Marone MM, Bartolini P. Department of Application of Nuclear Techniques in Biological Sciences, IPENCNEN, Cidade Universitaria, Sao Paulo, Brazil.

    A useful correlation between maximum thyroid uptake and radioiodine urine levels at different times after exposure was developed in order to determine when the intervention with an adequate blocking agent might still be effective. In an animal model (dog), six different doses were administered in the range of 100-600 kBq. The best correlation was found between the 125I uptake after 48 h (T-48) and urine radioactivity 4-6 h (U-4, U-5, U-6) after exposure. For the case of U-4, the equation Y(T-48) = 0.790 X(U-4) + 2.973 (r = 0.974 with a level of significance of p < 0.001) was obtained. An analogous study, carried out in humans (n = 20) to whom 1311 was administered, showed a similar correlation and level of significance: Y(T-24) = 1.162 X(U-4)+3.263 (r = 0.926; p < 0.001). The validity of this correlation was confirmed in four volunteers who received small doses of 125I(25-100 kBq), with good agreement between measured and extrapolated thyroid uptake and a mean difference of less than 10% (CV = 16.2%). Three different blocking agents were then tested in the same dog: potassium iodide, potassium perchlorate, and a thionamide (Tapazole). The blocking action of the first two compounds was about 90%, as opposed to only 48% for the third compound. Potassium iodide was chosen for its limited side effects and more universal utilization. The final study, carried out with four different doses, indicated that 25 mg of KI is the ideal amount to be administered to the dog. This corresponds to approximately 100 mg for a 70 kg human being (i.e., 1.4 mg kg(-1)). This dose, when administered to a volunteer 4 h after exposure, provided a thyroid blocking of 68%. web link

    Health Phys 1993 Nov;65(5):545-9

    Potassium iodate and its comparison to potassium iodide as a blocker of 131I uptake by the thyroid in rats, Pahuja DN, Rajan MG, Borkar AV, Samuel AM.

    Radiation Medicine Centre, B. A. R. C., Parel, Bombay.

    Potassium iodide is the preferred thyroid blocker for personnel handling radioiodine and is recommended as a prophylaxis for the population in the nearfield of a nuclear reactor which would be likely to be exposed to radioiodine in an accidental breach of containment. However, in hot and humid climates, this hygroscopic chemical has a poor shelf life due to hydrolytic loss of iodine vapors. On the other hand, another iodine-rich salt, potassium iodate (KIO3), is quite stable and has a much longer shelf life. The present study compares potassium iodide and KIO3 as thyroid blockers and examines the appropriate time at which they should be administered in case of radioiodine exposure. Either of the two were given in recommended dosage (100 mg stable iodine per 70 kg body weight) at -2, 0, +2, +4, +6, and +8 h after administration of tracer quantities of radioiodine (131I) to age-, weight-, and sex-matched rats. 131I uptake in thyroid was measured 24 h after its administration in the experimental animals and compared with placebo administered controls. Results suggest that KIO3 is as effective a thyroid blocking agent as potassium iodide. In comparison to controls, 24-h thyroid uptake of 131I can be substantially reduced if potassium iodide or KIO3 is given to the animals within 2-4 h after exposure to 131I. Another noteworthy observation is that KIO3 is effective even at 8 h when administered at twice the usual dosage in comparison to the single dose, which does not show appreciable thyroid blocking properties after 8 h. web lin

   


 ELEKTROWNIE JĄDROWE
I PROFILAKTYKA RAKA TARCZYCY


 

26. kwietnia
dzień opamiętania propagatorów
"czystej" energii atomowej
 
 

 


 
 
Transport kolejowy 23 ton paliwa nuklearnego - prętów tlenku uranu
21. kwietnia 2001

Dziennikarze poinformowali polską opinię publiczną o transporcie kolejowym 23 ton paliwa jądrowego - prętów tlenku uranu. Zezwolenia na tranzyt przez polski obszar celny udzielił Prezes Państwowej Agencji Atomistyki. W swoich wypowiedziach przedstawiciele administracji rządowej zapewniali, że przewóz prętów tlenku uranu nie stwarza zagrożenia zdrowia ludzi i środowiska w naszym kraju. Najbardziej uspokajającą wypowiedź zarejestrowali dziennikarze Polsatu: "Ładunek nie jest niebezpieczny ani w czasie normalnego przewozu, ani nawet gdyby nastąpiła awaria. Wyobraźmy sobie, że ten pociąg najeżdża na minę i cały ten materiał jest w postaci proszku rozproszony po środowisku. Wtedy również nie będzie to dla środowiska stanowiło jakiegoś zagrożenia radiacyjnego." (Jerzy Niewodniczański, Prezes Państwowej Agencji Atomistyki, wypowiedź dla Informacji PTV POLSAT, 21.04. 2001). Dzięki reporterowi Faktów TVN widzowie mogli zobaczyć ostrzeżenia na wagonach zawierające słowo "RADIOACTIVE", a w kilkanaście minut później w głównym wydaniu Wiadomości Pierwszego Programu Telewizji Polskiej usłyszeć zapewnienia, że " ładunek nie jest radioaktywny".

W tej sytuacji należy wyodrębnić dwa źródła rzeczywistych zagrożeń zdrowia publicznego związanych z  transportem paliwa jądrowego przez Polskę:
1. pręty tlenku uranu
2. stosunek administracji rządowej do zdrowia ludzi

Pręty tlenków uranu

Uran naturalny (tlenek uranu, minerał uraninit) to w większości izotop U-238 i rozszczepialny izotop U-235. Obydwa izotopy, a tym samym cały minerał są określane jako bardzo radioaktywne, ale uzyskanie paliwa jądrowego wymaga wzbogacenia U-238 o większą niż naturalna ilość U-235. W naturalnym uranie jest  0.7% rozszczepialnego izotopu U-235 , w paliwie reaktorowym - do 3,5 - 4%,  w bombie atomowej- ponad 90%. Rozszczepienie jednego kilograma izotopu U-235 daje tyle energii co spalenie 2500 ton węgla. Pręty paliwowe to uran wzbogacony. 23 tony paliwa radioaktywnego zawierają  800 - 900  kg izotopu U-235 i wystarczą na ok. 150 dni pracy elektrowni atomowej.

Tlenek uranu eksploatowany był m. in. w Polsce w kopalni w Kowarach k/Jeleniej Góry w latach 1948-63 - pod nadzorem NKWD - przez górników albo wykonujących pracę niewolniczą, albo niepowiadomionych o zagrożeniu radioaktywnością.

Stosunek administracji rządowej do zdrowia ludzi

Za ochronę przed promieniowaniem jonizującym odpowiadają przede wszystkim Państwowa Agencja Atomistyki oraz Inspekcja Sanitarna. Zgodnie art. 33a Ustawy z dnia 4 września 1997 r o działach administracji rządowej (Dz. U. z 1997 r. Nr 141, poz. 943 z p. zm.) prezes Rady Ministrów sprawuje nadzór nad działalnością administracji rządowej nie objętą zakresem działów w administracji rządowej, w tym  (pkt. 3a) wykonywaną   przez   Państwową Agencję Atomistyki. Zgodnie z  Art.33b tej Ustawy prezes Rady Ministrów wykonując politykę Rady Ministrów wydaje kierownikom urzędów, o których mowa w Art. 33 a, wiążące wytyczne i polecenia. Z kolei  nadzór  nad Głównym Inspektorem Sanitarnym sprawuje minister właściwy do spraw zdrowia.

Zgodnie § 1. pkt 1.   Zarządzenia Prezesa Państwowej Agencji Atomistyki z dnia 28 sierpnia 1997 r. sprawie określenia przypadków, w których działalność związana ze źródłami promieniowania jonizującego nie wymaga zezwolenia  (Mon. Pol. Nr 59, poz. 569):
"Zezwolenie na działalność związaną ze źródłami promieniowania jonizującego nie jest wymagane, jeżeli działalność ta nie spowoduje narażenia na promieniowanie jonizujące powyżej poziomu wynoszącego 10 µSv i 1 osoboSv w ciągu roku odpowiednio dla: dowolnej osoby (w odniesieniu do całego ciała) i całej grupy osób, narażonej w wyniku danej działalności."
Fakt wydania zezwolenie na  tranzyt przez polski obszar celny 23 ton paliwa jądrowego stanowi formalne potwierdzenie, że ryzyko związane z tą działalnością transportową nie jest urojone a jest rzeczywiste. Dezinformacja uprawiana na koszt podatników jest bezprawna i kompromituje obecną władzę.

Dzieje się to w 15 rocznicę katastrofy  w Czarnobylu,  nadto  w Dniu Ziemi 2001.

Dr Zbigniew Hałat, lekarz specjalista epidemiolog.
Główny inspektor sanitarny i zastępca ministra zdrowia ds. sanitarno-epidemiologicznych
w rządzie J. K. Bieleckiego, J. Olszewskiego i H. Suchockiej.
 


KATASTROFA W CZARNOBYLU


ELEKTROWNIE JĄDROWE
I PROFILAKTYKA RAKA TARCZYCY



zagrożenia zdrowia uznawane w krajach cywilizowanych za rzeczywiste,

polskie władze traktują jako urojone
 

ZAGROŻENIE RADONEM I RADEM
 

IRRADIACJA (NAPROMIENIANIE) ŻYWNOŚCI
 

I Krajowa konferencja ogólnopolskiego
Stowarzyszenia Ochrony Zdrowia Konsumentów
“RZECZYWISTE, DOMNIEMANE I UROJONE
ZAGROŻENIA ZDROWIA KONSUMENTA W POLSCE’’
8. grudnia 1998r.
Sala Konferencyjna Ministerstwa Rolnictwa i Gospodarki Żywnosciowej
 Warszawa
CEL, UZASADNIENIE WYBORU TERMINU, PROGRAM,
STRESZCZENIA WYSTĄPIEŃ, FOTOGRAFIE
 



Po atomowym transporcie
Gazeta Wyborcza (Szczecin) z 24. kwietnia 2001r.

Niebezpieczeństwo było realne - utrzymują zarówno szczecińscy Zieloni, jak i były główny inspektor sanitarny kraju, po tym, jak w sobotę ze Szczecina wyjechał transport paliwa jądrowego dla elektrowni w Temelinie

Niebezpieczeństwo nie było urojone - napisał do prezydenta Szczecina epidemiolog dr Zbigniew Hałat, były główny inspektor sanitarny kraju, po tym, jak w sobotę ze Szczecina wyjechał kolejowy transport paliwa jądrowego dla elektrowni atomowej w Temelinie.

- Bywają w mieście niebezpieczniejsze ładunki - odpiera Piotr Gabinowski, dyrektor wydziału zarządzania kryzysowego i ochrony ludności Urzędu Wojewódzkiego.

Co ciekawe, zarządu Szczecina, choć to on odpowiada za bezpieczeństwo na terenie swojego miasta, nikt nie poinformował oficjalnie o tym, że w porcie zostanie przeładowany atomowy ładunek.

- Pierwsze pogłoski, które dotarły do urzędu w piątek, były bardzo nieprecyzyjne i niepokojące, mowa była nawet o odpadach atomowych - wspomina Joanna Martyniuk, kierownik biura promocji i informacji UM. - W tej sytuacji prezydent zażądał od wojewody wyjaśnień i informacji, co to za ładunek i jakie podjęto środki bezpieczeństwa.

Okazało się, że transport ochraniany przez antyterrorystów organizowała Państwowa Agencja Atomistyki.

- Sami dowiedzieliśmy się o tym w ostatniej chwili, wszystko odbywało się w tajemnicy - wyjaśnia dyrektor wydziału zarządzania kryzysowego wojewody Piotr Gabinowski. - A zawiadamiać Urzędu Miejskiego nie było potrzeby, bo ładunek był bezpieczny.

Dyrektor Gabinowski dziwi się pretensjom miasta. - Swoją drogą prawie codziennie przez Szczecin przejeżdżają wagony z naprawdę niebezpiecznymi substancjami, takimi jak chlor czy amoniak, i nikt z Urzędu Miejskiego jakoś nie domaga się informacji na ten temat.

Jednak zdaniem byłego inspektora sanitarnego kraju, epidemiologa dr Zbigniew Hałata ryzyko związane z transportem wcale nie było urojone, lecz rzeczywiste. Potwierdza to fakt, że władze musiały wydać na tę okoliczność specjalne zezwolenia. Gdyby nie było niebezpieczeństwa, to nie byłyby one przecież potrzebne.

"Dezinformacja uprawiana na koszt podatników jest bezprawna i kompromituje obecną władzę" - czytamy w liście dr Hałata do prezydenta Szczecina. "Dzieje się to w rocznicę katastrofy w Czarnobylu, nadto w Dniu Ziemi 2001".

Wyjaśnień na temat transportu, jego procedury i zabezpieczeń domagają się od Państwowej Agencji Atomistyki szczecińscy Zieloni .

- To nieprawda, że przewożony tlenek uranu nie jest radioaktywny - uważa prezes Federacji Zielonych "Gaja" Jakub Szumin. - Tlenek uranu jest już sam w sobie promieniotwórczy. Napromieniowanie otoczenia zależy od procentowego wzbogacenia paliwa uranem - 235 i sposobach jego zabezpieczenia.

Szumin zapowiada, że Zieloni ze Szczecina nawiążą współpracę z organizacjami ekologicznymi z Czech, Austrii i Niemiec, aby razem protestować przeciw elektrowni w Temelinie.
- Gdyby o wiele bardziej niebezpieczne zużyte wypalone już paliwo jądrowe z Temelina miało jechać przez Polskę, to na pewno nie cofniemy się przed blokadami - zapowiada Szumin.

rem
 


 
Epidemiolog o atomowym ładunku
Nie taki bezpieczny
Kurier Szczeciński z 24. kwietnia 2001r.

"Fakt wydania zezwolenia na tranzyt przez polski obszar celny 23 ton paliwa jądrowego stanowi formalne potwierdzenie, że ryzyko związane z tą działalnością transportową nie jest urojone a rzeczywiste" - twierdzi w liście do prezydenta Szczecina Marka Koćmiela dr Zbigniew Hałat, lekarz specjalista epidemiolog.
  Swój wniosek o szkodliwości transportu prętów z tlenkiem uranu Z. Hałat wysnuł z paragrafu 1 pkt 1 zarządzenia prezesa Państwowej Agencji Atomistyki z 28 sierpnia 1997 r., gdzie określone są przypadki, w których działalność związana ze źródłami promieniowania jonizującego nie wymaga zezwolenia. Nie jest ono wymagane, "jeżeli działalność ta nie spowoduje narażenia na promieniowanie jonizujące powyżej poziomu wynoszącego...". Skoro więc Agencja musiała wydać pozwolenie, to ładunek nie był bezpieczny, co jest w sprzeczności z prasowymi zapewnieniami, jakie wygłaszali przedstawiciele PAA i rządu.
Zdaniem Z. Hałata, w kwestii transportu prętów z tlenkiem uranu dla elektrowni atomowej w czeskim Temelinie, które przeładowano w szczecińskim porcie, "dezinformacja uprawiana na koszt podatnika jest bezprawna i kompromituje obecną władzę. Dzieje się to w 15. rocznicę katastrofy w Czarnobylu, nadto w Dniu Ziemi 2001" - kończy list lekarz epidemiolog.(kl)
 


 




 

World Health Organization current standards:
  • The guideline for drinking-water quality (2 µg/litre), a value considered to be protective for sub-clinical renal effects reported in epidemiological studies (WHO,1998).
  • Tolerable Daily Intake (TDI) for oral exposure to uranium of 0.6 µg/kg of body weight/day WHO (1998).
  • Limits of ionizing radiation exposure of 1 mSv/year for the general public and 20 mSv/year averaged over five years for radiation workers (Basic Safety Standards,1996).

INTERNATIONAL AGENCY ON CANCER RESEARCH
Fact Sheet No 257
January 2001

DEPLETED URANIUM

Uranium and Depleted Uranium

  • Uranium is a naturally occurring element used, among other applications, in the generation of nuclear power. Naturally occurring uranium has three principal radioactive isotopes, namely U-238, U-235 and U-234.
  • Depleted uranium (DU) is a by-product of the process of uranium enrichment (increasing U-235, the fissionable isotope concentration) in the nuclear power industry in which nearly all the radioactive isotope U-234 and about two thirds of the U-235 are removed. Thus, DU is almost entirely U-238 and is about 60% as radioactive as natural uranium. DU can also contain traces of other radioactive isotopes introduced during processing.
  • Chemically, physically and toxicologically, DU behaves in the same way as the metallic form of natural uranium. Fine particles of both metals ignite easily, producing oxides.
Uses of Depleted Uranium
  • Peaceful applications of DU have included counterweights in aeroplanes, shields against radiation in medical radiotherapy units and for transport of radioactive isotopes.
  • DU is used for heavy tank armour, anti-tank munitions, missiles and projectiles due to its high density and melting point, and availability. DU weapons are regarded as conventional weapons and are used freely by armed forces.
Concerns Raised by the Use of Depleted Uranium
  • DU is released from fired weapons in the form of small particles or dust that may be inhaled, ingested or remain in the environment.
  • DU weapons may affect the health of the populations living in the conflict areas in the Gulf and the Balkans. There is speculation that the "Gulf War Syndrome" is linked to DU exposure, but no causal relationship has yet been established.
  • DU was released into the environment by planes that crashed (e.g. Amsterdam, Netherlands in 1992; Stansted, United Kingdom in January 2000); thishas raised the concern of governments and non-governmental organizations.
Depleted Uranium and Human Health
  • The effects of DU on human health are complex, due to its chemical form that enters the body, and may be caused by both chemical and radiological mechanisms.
  • Information on health and environmental effects of uranium is limited. However, since uranium and DU are essentially the same, except for the composition of their radioactive components, scientific studies on natural uranium are applicable to DU.
  • For the radiation effects of DU, the picture is further complicated since most data refer to the health effects of natural and enriched uranium.
  • Health effects depend on: the route and magnitude of exposure (ingestion, inhalation, contact or in wounds) and the characteristics of DU (particle size and solubility). The likelihood of detection of possible effects may depend on the setting (military, civil, occupational).
Types of Exposure

On average, approximately 90 µg of uranium exists in the human body from normal intakes of food, air and water; approximately 66% in the skeleton, 16% in liver, 8% in kidneys and 10% in other tissues.

  • External exposure occurs during proximity to DU metal (e.g., working in a munitions store or vehicle equipped with DU munitions or DU armour) or through contact with dust or shrapnel created following explosion or impact. Effects due to external exposure only (no ingestion, inhalation or dermal absorption) would be limited to radiological effects.
  • Internal exposure occurs by ingestion and inhalation. In the military environment, wounds represent an additional route of exposure if these are caused by the impact of DU projectiles or armour.
Absorption of Uranium into the Body
  • Most (>95%) uranium entering the body is not absorbed, but is eliminated via the faeces.
  • Of the uranium that is absorbed into the blood, approximately 67% will be filtered by the kidney and be excreted in the urine in 24 hours.
  • Uranium is distributed to the kidney, bones and liver. The time for half of the uranium to be excreted in the urine has been estimated to be in the range from 180 to 360 days.
Health RisksChemical toxicity:

Uranium causes kidney damage in experimental animals, and some studies indicate that long-term exposure may result in damage to kidney function in humans. The types of damage that have been observed are nodular changes to the surface of the kidney, lesions to the tubular epithelium and increased levels of glucose and protein in the urine.

Radiological toxicity:

  • DU decays mainly through emission of alpha particles that do not penetrate the external skin layers but may affect internal body cells (which are more susceptible to the ionizing effects of alpha radiation) when DU is ingested or inhaled. Exposure to alpha and beta radiation from inhaled insoluble DU particles may therefore lead to lung tissue damage and increase the probability of lung cancer. Similarly absorption into the blood and retention in other organs, notably the skeleton, is assumed to carry an additional risk of cancer in these organs, depending on the level of radiation exposure. However, at low radiation exposure levels, the risk of cancer is thought to be very low.
  • Up to now, no adverse health effects have been established in the limited epidemiological studies of internal exposure to radiation through ingestion and inhalation of DU particles or through skin lesions and wounds contaminated by DU or in studies of uranium workers exposed to natural or enriched uranium.
Could DU Cause Leukaemia Among Military Personnel?

Leukaemia occurs in adult populations in the world at an incidence rate of about 50 cases per million per year for the age group range of 20-45 years. The exact rate of leukaemia will vary depending on the country. While exposure to DU could theoretically lead to a risk of cancer, this seems unlikely to have occurred among military personnel in the Balkans for the following reasons:

  • Generally several years (at least two to five years) are needed between exposure to ionizing radiation and clinical detection of radiation-induced leukaemia.
  • While ionizing radiation exposure is known to cause leukaemia, the risk is proportional to the level of radiation exposure. As is illustrated from previous experience, about half the leukaemia cases among survivors of the atomic bomb on Hiroshima and Nagasaki are attributable to gamma-ray and neutron exposure from the bombing. In contrast, about 10% of leukaemia deaths in a large multinational study of nuclear industry workers are thought to be attributable to external gamma-ray exposure. Furthermore, while a large increase in childhood thyroid cancer has been demonstrated 15 years after the Chernobyl nuclear reactor accident, as yet, no increase in leukaemia has been detected in populations environmentally exposed in the most contaminated territories.
  • No radiation-related increases in leukaemia have been established in uranium miners or workers milling uranium metal for nuclear reactor fuel elements.
  • In war zones, the inhalation and ingestion of DU contaminated dust, even under extreme conditions, and shortly after the impact of projectiles, as determined by the amount of dust that can be inhaled, has been calculated to result in a radiation exposure of less than about 10 millisieverts (mSv). This represents about half the annual dose limit for radiation workers. Such an exposure is thought to result only in a small proportional increase in the risk of leukaemia, of the order of 2% over the natural incidence.
While from the science it appears unlikely that an increased leukaemia risk related to DU exposure would be detectable among military personnel in the Balkans, the World Health Organization (WHO) does not have enough information on the exposure situations in the Gulf or Balkans to make firm conclusions. A detailed study is needed to determine the numbers of soldiers exposed, the amount of DU used, how much exists on the surface, how much is buried in the ground, what is the composition of fine to coarse particles, and whether or not the excess of leukaemia reported among military personnel is above the normal incidence. It is important that when studies of military personnel possibly exposed to DU are carried out, information on all possible risk factors (including other environmental exposures, etc.) for leukaemia are collected so that any possible cause of leukaemia is not missed.

DU in the Environment

  • In arid regions, most DU remains on the surface as dust. It is dispersed into soil more easily in areas of higher rainfall.
  • Cultivation of contaminated soil and use of contaminated water and food may pose health risks, but these are expected to be limited. Chemical toxicity would be expected to be the main health concern rather than the radiation exposure.
  • Young children rather than adults could be more at risk of DU exposure when returning to normal activities within a war zone through contaminated food and water, since typical hand-to-mouth activity of inquisitive play could lead to high DU ingestion from contaminated soil.
Standards

WHO has guidelines on uranium that would also apply to DU. Currently these are:

  • The guideline for drinking-water quality (2 µg/litre), a value considered to be protective for sub-clinical renal effects reported in epidemiological studies (WHO,1998).
  • Tolerable Daily Intake (TDI) for oral exposure to uranium of 0.6 µg/kg of body weight/day WHO (1998).
  • Limits of ionizing radiation exposure of 1 mSv/year for the general public and 20 mSv/year averaged over five years for radiation workers (Basic Safety Standards,1996).
WHO Activities
  • An extensive literature review has been undertaken to determine the generic health consequences of exposure to uranium and DU. A forthcoming WHO monograph summarizes the results of the review.
  • WHO's scientific review included a requirement to identify gaps in knowledge requiring further research in order to make better health risk assessments of human exposure to DU. A high-level scientific expert group will be convened by WHO to review these requirements for research and make proposals for in-depth research.
  • WHO continues to provide advice to the United Nations Balkan Task Force (United Nations Environment Programme-UNEP) and on the possible environmental health consequences of the Gulf War.
  • WHO, through its International Agency for Research on Cancer (IARC), continues to study the effects of low-level exposure to ionizing radiation in order to improve the scientific bases of radiation protection. In particular, a study designed to assess whether there has been an increased rate of cancer amongst military personnel who served in the Gulf War or the Balkans, as well as amongst exposed populations (and, if appropriate, to evaluate the possible role of DU in the increase) is being planned.
Research Needs

Interim research needs identified so far by the WHO review include:

  • Clarifying our understanding of the degree of kidney damage associated with changes in renal function (and its reversibility) in human populations subject to different levels of uranium exposure.
  • Investigating the chemical and physical form, physiological behaviour, leaching and subsequent environmental cycling of specific forms of uranium from various industrial and military sources. Such data need to be linked to the extensive knowledge base of the environmental and physiological behaviour of uranium compounds.
  • Improving our understanding through valid scientific studies of the reproductive, mutagenic and carcinogenic properties of uranium and, by inference, depleted uranium.
Recommendations
  • There are many gaps in knowledge about DU that need further research. A coordinated effort is needed to obtain valid information through high quality research so that better health risk assessments can be made and more precise recommendations can be provided on the need to clean up after conflicts.

  • Given the remaining uncertainties about the effects of DU, it seems reasonable to undertake clean-up operations in impact zones where there are substantial numbers of radioactive particles remaining. If there are very high concentrations of DU, then areas may need to be cordoned off until the particles are removed. This is especially the case where children are likely to be present.


ELEKTROWNIE JĄDROWE
I PROFILAKTYKA RAKA TARCZYCY


PRAWO OCHRONY ŚRODOWISKA
Ustawa
z dnia 27 kwietnia 2001 r.
Prawo ochrony środowiska

ustawa wprowadzająca
Ustawa
z dnia 27 lipca 2001 r.
o wprowadzeniu ustawy - Prawo ochrony środowiska,
ustawy o odpadach oraz o zmianie niektórych usta

stara ustawa
Ustawa
z dnia 31 stycznia 1980 r.
o ochronie i kształtowaniu środowiska



ZRÓWNOWAŻONY ROZWÓJ

DOSTĘP DO INFORMACJI PUBLICZNEJ

O TYM JAK NIEKTÓRZY PRZEDSIĘBIORCY
I PRZEDSTAWICIELE WŁADZ ŁAMIĄ PRAWO
MOŻNA PRZECZYTAĆ NA NASTĘPUJĄCYCH STRONACH:

DIOKSYNY - RAKOTWÓRCZE SUBSTANCJE W ŻYWNOŚCI

IV - Nadzwyczajna konferencja ogólnopolskiego
Stowarzyszenia Ochrony Zdrowia Konsumentów
“WPŁYW ŻYWNOŚCI TRANSGENICZNEJ
NA ŚRODOWISKO I ZDROWIE CZŁOWIEKA"
 18. października 2000r.
Instytut Żywnosci i Żywienia
Warszawa

INNE PRZYKŁADY ZAGROŻEŃ  ZDROWIA
W NASTĘPSTWIE SKAŻENIA ŚRODOWISKA



 
 
M
C
K
alergie, zatrucia, zakażenia, urazy
dochodzenie przyczyn  w składzie: 
żywności, napojów, kosmetyków, leków
i in. produktów,
w usługach oraz w otaczającym środowisku

PORADNIA
MEDYCZNEGO CENTRUM KONSUMENTA
 

M
C
K

 


 

MEDYCZNE CENTRUM KONSUMENTA
 



§
§
§
§
§
kto wytwarza lub sprzedaje produkt niebezpieczny, ten odpowiada
za ciężki uszczerbek na zdrowiu, inne naruszenie czynności narządu ciała lub rozstrój zdrowia, a także za doznaną krzywdę konsumenta

Naprawienie szkody obejmuje wszelkie wynikłe z tego powodu koszty 
Na żądanie poszkodowanego zobowiązany do naprawienia szkody powinien  wyłożyć z góry sumę potrzebną na koszty leczenia, a jeżeli poszkodowany  stał się inwalidą, także sumę potrzebną na koszty przygotowania do innego  zawodu. Jeżeli poszkodowany utracił całkowicie lub częściowo zdolność do  pracy zarobkowej albo jeżeli zwiększyły się jego potrzeby lub zmniejszyły  widoki powodzenia na przyszłość, może on żądać od zobowiązanego do  naprawienia szkody odpowiedniej renty. Jeżeli w chwili wydania wyroku szkody nie da się dokładnie ustalić, poszkodowanemu może być przyznana renta tymczasowa.

§
§
§
§
§

 
 
ZAGROŻENIA ZDROWIA W POLSCE
CZASOPISMO RUCHU OCHRONY ZDROWIA
AKTUALIZOWANA WERSJA ELEKTRONICZNA
"ZAGROŻENIA ZDROWIA W POLSCE"



ALFABETYCZNY SPIS ZAWARTOŚCI
STRON INTERNETOWYCH DOMENY HALAT.PL
DOTYCZĄCYCH OCHRONY ZDROWIA